JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 90, NO. B10, PAGES 8707-8717, SEPT
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Five to ten years

U.S. Geological Survey, Menlo Park, California

pl data from an array of 34 total field magnetometers are used to define

and spatial charactgristics of secular variation throughout central and southern Califors
period, well-determiped rates of secular variation are obtained at cach site. These rates ark temporally
linear but spatially variable, ranging from —45 nT/a near San Francisco to — 54 nT/a near
border. Least squares analysis of all data indicates secular variation decreases in a general
direction according|to F = k,#0 + k,#¢ + K, where F is in nanoteslas per year, § and ¢

graphic latitude and longltude and k,, k,, and K are 1.66 + 0.13 nT/a deg, —0.13 + 0.10 nl
-123.2 + 0.2 nT/a,| respectively. Deviations of as much as 1 nT/a occur on scales of

kilometers. These apparent small-scale secular variation anomalies result, in part, from
local induction and| remanent magnetization and may be reduced by determination of a
function. A planar siirface fit to the corrected data has the form F = k,»6 + k,»¢ + K, whe
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Fig. 1. Sites m California and Nevada where synchronized magnetic field measurements are made continuously or

peniodically. Magnetometers
and survey measurements are
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penetration or skin depth given by

D = (2/wpa)

where ¢ is the conductivity, w is thg

is the permeability of the crust.

? (0

angular frequency, and g

Electrical induction is not expected to provide any signifi-
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Fig. 2. Total magnetic ficld time histpries [rom northwest to south-

east along the San A

duction at different sites (the “suscy

dreas Fault.

ptibility effect”). Combined

variable remanence and susceptiliility leads to ficld vectors

with different orientations at diffi
effect”™). In simple terms, the static
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ent, The application of a uniforn|
induced component) will therefo
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Site response effects have been
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lculated for all of the Cali-
telemetered data in the
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during storm periods, 6X,, 6Y,, an

C 0Z, where 6F; is the
cd to HAR total field data
| 6Z; are the corresponding
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Dbserved and Corrected Secular Variation From Sites in the Magnetomeg

ter Array

TABLE 1. ¢

Secular Variation, nT/a

Site  Latitude | Longitude Observed Corrected Correction, nT/a  Hesidual, nT/a
BLM' 37319 | —122.151 —44778 + 0.008 —44.990 + 0.008 —0.212 —0.375
MTH| 37322 | —121.667 —45.677+ 0009 —45400 + 0.009 +0.277 —0.676
COY 37072 | —121.503 —45091 + 0017 —45727 £ 0017 —0.636 —0.590
EUC | 37.053 | —121.805 —45.860 +0.005 —45.188 + 0.005 +0.672 —0.093
SAR 36956 | —121.592 —46.162 + 0.006 --45.456 + 0.006 +0.706 —0.165
ANZ 36886 | —121.596 —46.476+ 0.005 —45.002 £ 0.005 +1.474 0.393
SNJ | 36850 | —121.550 —46.000 + 0.009 —45951 + 0.009 +0.049 ~0492
SIN | 36819 | —121.509 —45.175+ 0.006 —45.059 + 0.004 +0.116 0.457
HAR 36.775 —121.454 —46.673 + 0005 —45937 + 0.005 +0.736 —0.343
LEW 36673 | —121.279 —46.834 + 0005 —45745 % 0.005 + 1.089 0.044
BVL 36572 | -121.193 —46900 + 0.004 —46.144 + 0.004 +0.756 —0.184
LGC @ 35910 | —120482 —47.855+ 0006 —47.609 + 0.006 +0.246 ~0.489
GDH 35829 | —120.341 47770+ 0.007 —47.451 £ 0.007 +0.319 —0.176
AGD 35730 | —120.244 —48.652 + 0.007 —47.526 + 0.007 +1.126 —0.080
GRA 35603 | —120.173 —49.606 + 0.017 —47.185 + 0.017 +2.421 0.468
STG 34917 | —119.336 —49.320 £ 0.009 —48.806 + 0.009 +0.514 0.073
ABL 34.833 ~119.229 --48967 + 0.009 —49.191 1+ 0.009 —0.224 —0.161
CHU 34810 | —119.012 —49275+ 0008 —49.263 + 0.008 +0.012 —0.148
PAL 34459 | —117.898 —49.186 + 0016 —49.718 + 0.016 —-0.532 0.185
BUR 34410 | —117.732 —51316 + 0.008 —49.987 + 0.008 +1.329 0.028
LRS 34.244 ~ 117494 —50948 + 0.008 —50.752 4+ 0.008 +0.196 —0.432
SSK 34220 | —117.696 —50.198 £ 0.014 —50.374 £ 0.014 —0.176 —0.065
LSB | | B4.065 ~116.548 ~-51.329 + 0.012 —50.003 + 0.012 +1.326 0.807
OCH | 34.029 —116.600 -—51.769 + 0.012 —49919 + 0.012 + 1.850 0.933
TAB 33.543 —116.605 —50.700 + 0.017 -—51.157 + 0.017 —0.457 0423
BCB | 33475 | --115855 —51.898 + 0.014 —51.300+ 0.014 +0.598 0.558
012 38371 | —118.133 —45240 £ 002 —45.240 + 0.02 0 —1.264
006 38283 | —118600 —44080+002 —44.080+ 0.02 0 —0.081
NIM | 37996 | —120.656 —42.560+ 002 —42.560 + 0.02 0 1.389
N2M | 37991 | —120.513 —41.565+ 0.02 —41.565 £ 0.02 0 2.424
017 37.590 | —118.374 —45430+ 002 —45430+0.02 0 —0.338
022 137.000 | —118.250 —45750+0.02 —45750 + 0.02 0 0.257
024 36.681 ~118.114 —47.360 + 002 —47.360 + 0.02 0 —0.843
AIM = 33050 | —115504 —53.889+0.02 —53.889 + 0.02 0 —-1.311

The observed values were obtained by least squares linear fits to the data during the p

1984 from sites s
coefficients in Tab)
after subtracting a

hown in Figure 1. Corrected secular variation values were determir
e 2. Also included are the correction values at each site and the residua
planar fit from the corrected data as described in the text,

eriod 1976 to
ed using the
s at each site
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Fig. 3. Plot of site correction values, inclination, declination, and mean geomagnetic field (Januafy to March 1980) as a

function of distance along the San Andreas fault from San Francisco.
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TABLE 2. Geomagnetic Field Cocflicients, Corrected Component Data Relative to §
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Inclination and Declination Measurements for Sites in California

te HAR, and

Site | A X, nT/a B ¥, nT/a C Z,nT/a Declination, deg Irclination, deg
BLM 04373 |—2548 00144 —2684 10815 —30094 16.198 61.637
MTH 04421 |--25.77 0.0000 -27.14 1.1227 —30.29 16.206 61.381
COY  0.4459 26.11 --0.018 —27.51 10910 —31.71 15979 61.339
EUC 04554 |-26.11 —0.0308 -27.51 10767 —3L71 15.833 61.393
SAR 04657 |-2617 00533 -27.56 10934 -—31.77 16.150 61.143
ANZ 04365 |—2623 —00097 —2763 10619 —3185 15415 61.904
SNI 04433 |—-2627 —0.0020 -—2767 10771 —3150 15.771 61.157
SIN 04418 |-2634 00085 —27.74 10525 —3198 15.825 61.984
HAR* 04276 |—2643 00151 —27.84 10662 —32.09 15.727 60.951
LEW 04406 |--2661 —00029 —2803 10551 3232 15.909 60.797
BVL 04362 |—2675 —00050 —28.17 10658 —3248 15.878 60.847
LGC (04414 2778 —0.0449 —29.26 1.0869 —33.73 15.303 59.932
GDH 04337 |—2795 —00379 —2944 10738 —33.94 15.042 60.197
AGD 04434 |-2809 —00307 —29.59 10548 —34.11 15.771 60.946
GRA 04376 |[—2823 —00399 —29.73 10510 —34.27 15.304 60.200
STG 04579 |-29.39 —0.0506 —3096 10346 —3568 14.983 59.670
ABL 04366 |-2949 —00584 —3107 10648 —3581 15.366 59.704
CHU 04174 |—-29.68 —0.0686 -—31.26 10827 —36.04 14.424 59.764
PAL 03993 |—30.71 —0.0639 --3235 10599 —37.29 14.403 59.736
BUR 03915 |—30.87 —0.0671 —3252 10695 —37.48 14.568 60.171
LRS 04009 |—31.19 —0.0708 --3285 1.0714 —37.87 14.391 59.571
SSK 04279 |—3121 —0.0719 —328% 10391 —37.90
LSB 03573 |[—3204 —00527 —3375 10366 -3891 14.482 59.893
OCH 03753 |—3203 —00562 —3374 10233 —3889 14.437 59.336
TAB 03762 |—32.38 —0.0535 —3410 10379 —39.31 13.731 58.869
BCB  0.3884 |-33.04 —00897 —3480 10369 —40.11 13.728 59.074

*Reference site.
1147

320 [_.. = At
123° _
Fig. 5a. Total field seculay

variation calculations for central and southern California obtained witl
0.25 nT/a from the PGRF79 model [Peddie, 1982].
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detrended field components from
the zero-lag Wiener filter coefficig
formly over a period of time, it f]
+ CZ,. Before calculation of thg
data and their first derivatives wet
ation of storm amplitudes obtaing
of storm amplitudes across the wl
coefficients and the X, Y, and Z v
the different sites in Table 2 toge
nation and declination at|each si
spondence (see Figure 3) between
differ significantly from Zzero, an
declination values, and the magne
indicated by mcan total field at ¢
magnetic anomaly maps of the a
significant crustal magnetization

there is significant distortion of {
correction must be made for these

5. CORRECTED SECULA

An improved set of secular va
using the coefficients in Table 2 a
component data. These values arg

HAR, and A, B, and C are
nts. If the field changes uni-
bllows that F, =~ AX, + BY;
coeflicients the component
¢ corrected for latitude vari-
d by a least squares analysis
hole array. The values of the
alues obtained are listed for
ther with the values of incli-
te. We note a general corre-
local correction terms that
omalous inclination values,
tization state of the rocks, as
ach site, or more crudely, by
ca. Generally, in regions of
.£., ANZ, AGD, BUR, etc.),
he geomagnetic field, and a
effects.

R VARIATION DATA

ration values were obtained
nd the corrected HAR three-
: included in Table 1 togeth-

er with the errors in each determination, the amount of cor-

rection required at each site, and
as we will sec later, by subtracting

the residual values obtained,
a planar fit to the corrected
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nar fit to uncorrected total field data from the California array with a ¢
nT/a.

data. The corrected data were
routine in the same way as desd
interval was again chosen to be
in Figure 4b. An important fed
duction of apparent small-scald
San Andreas fault where the pd
give the highest site density and
which no corrections could b
N2M in the northeast) still shoy
variation anomalies.

bntour interval of 0.25

fit with the contour plotting
ribed for Figure 4a. The grid
0 km. The results are plotted
ture of Figure 4b is the re-
secular variation along the
rmanent telemetered stations
the best data quality. Sites for
made (e.g., sites NIM and
apparent small-scale secular

6. SecuLaR VARATION MODELS

Various geomagnetic referend
veloped from spherical harmon
tory data. The models allow pr
secular variation in various epo
carth’s surface [Peddie, 1981, 1
The detailed secular variation m
nia array can be used in conjus
to estimate the accuracy of the |

The various models PGRF7
refer to different time periods
considering here. However, the
that the character of secular var
this total time period, so we ca|
tions of the various models, botl

¢ ficld models have been de-
¢ analyses of global observa-
rdiction of and correction for
Chs at arbitrary points on the
D82; Cuin et al., 1983, 1984].
casurements from the Califor-
ction with model predictions
irious models in this region.

9, TGRFB0, Magsat, etc. do
ithin the total period we are
hbserved data (Figure 2) show
ation has not changed during
1 validly compare the predic-
between themselves and with
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320 f =
123°

Fig. 6b. Least squares plana

r fit to corrected total field data from the California array with a confo

nT/a.
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ur interval of 025

the observed data. Calculations frgm the PGRF79, Magsat
(MO51782), and IGRF80 models for the region spanned by
the California array arc shown in Figures 5a, 5b, and 5¢. The
models obviously do not agree with each other, and, if we
compare these plots with the uncorrected and corrected obser-
vations in Figures 4a and 4b, they do not agree with the
observed data either. While prediction of the detailed “small-
scale” variation would not be expdcted from global models,
the general amplitude and sense would be expected to be in
agreement with the observations.

In order to make a better genera
observed data and the various mode
Figures 4a and 4b was suppressed b

least squares planar fit to the data.
best fits the uncorrected array data is shown in Figure 6a. This

surface describing the rate of change|cf total field with time, F,
can be expressed by an equation of the lorm

F = k *@ + kyx¢p + K

comparison between the
predictions, the detail on
y computing a first-order
The planar surface which

2

where 0 and ¢ are the geographic latitude and west longitude
(negative), respectively, k, is 1.66|+ 0.13 nT/a deg, k, is
—0.13 + 0.10 nT/a deg, and K is —123.2 + 0.2 nT/a, respec-
tively, and the coefficient of determination is 0.9997. Almost
the same equation is obtained if the southern California data
arc omitted in order to test the sglution robustness with a

more uniformly distributed data subset.

The planar surface which best f|
is shown in Figure 6b. Its equation

F=lkx0 + k,

ts the corrected array data

has the form

v + K

()

where k,, k,, and K are nopw 1.50+ 008 nT/a deg,

—0.23 + 0.06 nT/a deg, and — 129
Comparison of the predicted and
indicates that discrepancies of sey
year and several tens of degrees o
the present models could be used
secular variation in this region.
The residual field variations af
secular variation can be obtained

2+ 0.12 nT/a, respectively.

observed secular variation
cral tens of nanoteslas per
ccur. It seems unlikely that
successfully to correct for

er removal of the general
by subtracting values calcu-

lated from cquation (3) from the ¢

The residual values obtained in th

orrected rates at each site,
way are listed in Table 1.

Figure 7 shows a contour fit to thase residuals calculated with
the same parameters as for Figure $a. Note that because of the

paucity of stations and because
Sierra Nevada frontal range ma

IM and N2M are on the
tic anomaly [Blake et al.,

19777, the apparent anomaly in the Great Valley is poorly

determined and not significant. I
have been successfully accomplish

generated by physical processes

external magnetospheric and io:

sources in the core. Since each o
siduals on the San Andreas faul

complete site corrections
ed, then these residuals are
dther than those related to
hospheric  disturbances or
flthe regions of greatest re-
tiis a region of anomalous
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32" U | . , ,

1230 ' ' ! '
Fig. 7. Residual total

| . S ——

field secular magnetic field changes not apparently related to sour
magnetosphere obtained by subtraction of Figure 6b from Figure 4b. The contour interval and thq

114°

tes in the core or the
grid spacing are again

0.25 nT/a and 30 km, respectively. Note that because of the paucity of stations and because NINi and N2M are on the

Sierra Nevada frontal range magnetic anomaly [Blake et al,

determined and not signili¢ant.

tectonic and seismic bchavior, fome contribution from tec-
tonomagnetic sources might be expected.

7. DISCUSSION

Five to ten years of total field proton precession data from
34 sites across California are used to define the characteristics
of secular variation between latitudes 33° to 38°N and lon-
gitudes 115° and 122°W. The observed secular variation de-
creases uniformly with time during this period. The values at
each site are well determined and range from —45 nT/a near
San Francisco lo —54 nT/a ncali the Mexican border with the
error in determination of thesc! rates typically less than 0.2
nT/a.

These data show general agreement from site to site in the
linear form of the secular variation, but sites only a few kilom-
eters apart can have rates which !diﬂ"cr by as much as 1.0 nT/a.
This is most easily demonstrated by the resulting scatter about
a least squares planar fit to the data or by the need to usc
high-order surfaces to fit all of the data. The regions near San
Juan Bautista (SIN in _EFigurc! 1) and Parkfield (GDH in
Figure 1) are densely instrumented because they are the most
tectonically active and geologically complex. Data from these
regions show the most scatter about the mean value of secular
variation in each place. | ,

Since the magnetic field at a| particular site resulting from
the application of a uniform or ponuniform external field per-

1977], the apparent anomaly in thef

turbation is a function of thg

Great Valley is poorly

local induced and remanent

magnetization vectors at that dite, the same applied field will

produce a different net field
these site response effects are n
magnetic surveying experimen
study. Correction for these e
comparisons of precise field va
A preliminary determination

ector at different sites. While
t a serious problem in general
s, they are of concern in this
vcts is necessary before valid
es can be made between sites.
f site response effects in the

California data was made by calculating the Wiener filter coef-

ficients which best mapped thr
netic storms at one site into th
other sites in the manner d
[1983]. Corrected secular vz
using these coefficients at each
The results, while not ideal,
secular variation in this region
The corrected data were {if
scatter about this surface is sti
exists whether the site respon
improved, or whether the resid
of tectonic origin. HAR, the o7
magnetometer, is on a granite
netic remanence and susceptib)
near the San Andreas [ault §

s-component data during mag-
total field data at each of the
ribed by Davis and Johnston
iation values were obtained
itc with continuous field data.
present the best estimates of
yct obtained.

with a planar surface. Some
| apparent, and a question still
¢ corrections could be further
1al changes are secular changes
ly site with a three-component
batholith with quite low mag-
lity [Hanna et al., 1972] but is
bhere the geology is complex.

Current channeling apparently occurs along the fault zone

[Johnston et al, 1983]. Better

results might be obtained by
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using data {rom the automatic threejcomponent magnetome-
ter run by the USGS at Fresno, California [4lldredge, 1983],
and from other three-component systems scattered through
the array. T

On the other hand, the largest re
dreas fault, shown in Figure 7 after t
secular variation, occurs in the region
system southeast of Palm Springs ne:
near BCB (Figure 1). Smaller, less s
on the southern Hayward/Calaveras
just to the south of Parkfield (GDH), In these locations, tem-
poral change in crustal stress and fptress localization is ex-
pected. In fact, two of the largest I'nula‘ earthquakes in Califor-
nia during the last 10 years have occyrred within the northern
anomaly. These earthquakes are thé Coyote earthquake of
August 6, 1979 (M, = 5.9), and the Morgan Hill carthquake of
April 24, 1984 (M, = 5.8), which occurred near sites COY and
MTIH, respectively (Figure 1). No moderately large earth-
quakes have yet occurred within the southern anomaly. The
amplitude of the residual (=0.75 nT}a) is comparable to sig-
nals expected from tectonomagneti¢ models of these areas
[Johnston, 1978]. If the models are cgrrect, a damaging earth-
quake might therefore be expected irf the region of the south-
ern anomaly in the near future. Howgver, without independent
data to support this possibility, it cannot be pursued further at
this point. An alternative but less likely explanation is that
correction for site cffects is not yet complete. Data from a few
threc-component magnetometers through the array would
clarify this.

Neither the corrected nor the undorrected data agree well
with the current secular variation models. While the models
were not designed for precise predictions on such a small
scale, agreement was expected with the general form and am-
plitude of secular variation measurcfrj_ with the array. This is
clearly not the case. While better results may be obtained in
other regions, the differences between observations and predic-
tions obtained here are so large that they preclude use of any
of the present models for independcd't prediction and removal
of secular variation from the array data. More importantly, il
these data were from various observatories around the world,
the use of spherical harmonic expansions to fit the data would
clearly produce distorted results.

It is possible that some of the gbservatory data used to
construct the global models are contaminated by effects of
local induction and remanent magnetization and that these
are biasing the models. If so, similar analyses could be applied
to each of the magnetic ()bservatoriés to determine which are
in regions where distortion of the measured geomagnetic field
values might be expected. Significant improvements in the co-
efficients of spherical harmonic fits t » global data could result,
and this might explain some of the discrepancies between ob-
servations and models reported here.

sidual near the San An-
1e data are corrected for
of the San Andreas fault

OCH to the Salton Sea
mificant residuals occur
fault system (MTH) and

Acknowledgments. J. C. Cain kindlI ‘ran the secular variation
models and provided the data for Figurgs 5a, 5h, and 5¢. The manu-
script benefited from useful comments by R. W. Simpson and L. R.
Alldredge. ‘
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